Worksheet for 2021-10-11

Conceptual questions

Question 1. Let R be the rectangle with corners $(0,0),(2,0),(2,3),(0,3)$. Suppose that $f(x, y)$ is a function such that $f_{x}>0$ and $f_{y}<0$ on R. If we want to use a Riemann sum to overestimate the integral $\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y$, where we break up R into six 1×1 squares, where should we pick the sample points?
Question 2. You are asked to integrate some function $f(x, y)$ over some region R in the plane. In each of the following scenarios, say whether you are inclined to use the integration or$\operatorname{der} \mathrm{d} x \mathrm{~d} y$ or the integration order $\mathrm{d} y \mathrm{~d} x$. How firm is your conviction in each case (i.e. is the other order potentially still worth trying)?
(a) The function is $f(x, y)=e^{x^{2}}$.
(b) The region R is the triangle with corners $(0,0),(1,1),(1,-1)$.
(c) The region R is the region defined by $x^{2} \leq y \leq x$.
(d) The region R is the bounded region between the two curves $x=y-y^{3}$ and $x=y^{2}-1$.

Question 3. What region R maximizes the value of the integral below?

$$
\iint_{R}\left(3-x^{2}+2 x-4 y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

Question 4.

(a) (Warm-up) Evaluate the integral

$$
\int_{-3}^{3} \arctan \left(x^{3}\right) \mathrm{d} x
$$

Hint: What happens if you apply the change of variables $u=-x$?
(b) Evaluate the integral

$$
\int_{-1}^{1} \int_{1-\sqrt{4-4 y^{2}}}^{1+\sqrt{4-4 y^{2}}} e^{x^{2}+y^{2}} \sin y \mathrm{~d} x \mathrm{~d} y
$$

Hint: Switch the order of integration.

